NSF PIRE Annual Meeting 2022

Assessment and Sustainable Utilization Groundwater Resources Under Different Management and Climate Change Scenarios

Fahad Khan Khadim

PhD, Environmental Engineering, UConn NASA Postdoctoral Fellow 2022

Outline

Motivation for joining PIRE

GW Modeling Research

Inter-disciplinary Aspects

Broader Impacts and Way Forward

Motivation

ISSUES

- Annual GW recharge in Ethiopia: 36 billion m³
- In Tana, 2M people use potable GW; but limited use for irrigation.
- Rainfed irrigation, affecting 85% population
- GW could be considered for Regional growth, and Buffer climate vulnerability

Limited number of GW modeling efforts in the Blue Nile region

- Surface water and energy-based models
- Data scarcity is prominent for GW simulations
- Hydrogeological complexities

Rising concerns over

Groundwater Modeling

AREAS OF INTEREST

Research Questions

Assess the availability of GW resources to address ongoing challenges of water-food security, climate change impacts, and socio-hydrological stresses

Q1. Are there **enough** available GW resources in the Tana aquifer, and more specifically in the local irrigation communities of interest?

Q2. Is it environmentally **feasible** to use GW as supplemental irrigation during normal as well as dry and extremely dry years?

Q3. Is the existing irrigation infrastructure supportive of establishing a sense of **fair and equitable** water sharing in the local communities?

Q4. What could be the **climate change** (up to 2100) impacts on, a) GW resources in the Tana region, b) Lake Tana levels and releases, and c) local reservoir operations?

Methodology and Results

Data Used

- Observed Lake Tana water levels (1960 2005) (Boundary Condition);
- Historical GW well data (2013-16) (Calibration); and borehole data (1979-2002);
- Citizen Science data at four communities (GW level, TDR and MSMS soil moisture records) for validation (2017 current)
- 41 years (1979–2020) of daily recharge and streamflow (from CREST) => forced with T, Pa, Rad, H, and W from ECMWF and GDAS, and P from MSWEP-v1, and IMERG.

Regional GW Model in Gilgel-Abay

Local GW Model at Koga

Irrigation Scenarios and Crop Water Stress

Specifically assessed a hypothetical dry spell consisting of 2015 and 2009 for the REG+GW scenario

Crop water stress = [Potential Transpiration (DSSAT) – Root water uptake (MODFLOW)]

GW For Supplemental Irrigation

GW pumping for supplemental irrigation could be a potential solution for extreme droughts

9

Interdisciplinary Aspects: Climate Change

Climate change impacts on GW: CSIRO-Mk3

Mild GW Droughts $0 < [SWI = (W_{i,T} - W_{i,t}) / \sigma_{i,T}] < 1$

Interdisciplinary Aspects: Climate Change

Climate change impacts on Lake Tana

Interdisciplinary Aspects: Socio-Hydrology

100 3

- 80

- 60

- 40

20

100 2

80

- 60

- 40

- 20

100 5

- 80

- 60

- 40

0.32

0.32

Farmers Perceptions vs GW Model findings

Area	Dry	Normal	Wet
Koga	2015	2017	2018
Quashni	2015	2017	2014

Selection of Dry, Normal and Wet Years

- Total Precipitation
- Onset Precipitation (May and June)
- Number of Dry Spells (three consecutive dry days (<0.1 mm rain; or five consecutive days with <5 mm rain)

Broader Impacts and Way Forward

Leadership and Capacity Development

✓ Field visits in Summer 2018 and 2019

 ✓ Project Manager at UConn (2019-2022)

Perform State-of-the-Art research on water-food security and other interdisciplinary issues, helped me fulfill my PhD journey

Starting June 2022, I will be joining NASA as a postdoctoral fellow – Research topic: Using Remote Sensing to Predict Soil Salinity

Potential Future Work...

- Study climate change impacts on local irrigation, focusing on recent agricultural emphasis on exotic plants/ crops.
- Climate change impacts on local reservoir and irrigation operations by adopting more detailed data-driven or process-based modeling effort.
- Take advantage of our database of model simulations (41 years of baseline + 80 years of climate change scenarios) for possible downscaling and data driven modeling applications

Acknowledgements

THANK YOU

