

Evaluation of Hyper-Resolution Model Derived Water Budget Components Over the Upper Blue Nile

Introduction

Combining remote sensing observations with global/regional hydrologic models have made it possible to estimate different water cycle components at spatial scales where in-situ measurements are sparse or unavailable. These data are critical to support water resources analysis and management.

Objective

- Simulate the water cycle of the Blue Nile basin at high spatial (500 m) and temporal (hourly) resolution using a hyper-resolution distributed hydrologic model, Coupled Routing and Excess STorage (CREST-SVAS) and evaluate its performance in terms of evapotranspiration (ET) and Streamflow.
- > Compare the performance of CREST-SVAS with different hydrologic and land surface models in terms of the ET and streamflow at different basin scales.
- > Evaluate the performance of water budget estimation with respect to the observed and Gravity Recovery and Climate Experiment (GRACE) data.

Study Area

- > The Upper Blue Nile basin, the largest basin in Ethiopia (in terms of volume of discharge) • Drainage area: 176,000 km²
- \succ Evaluation in three sub-basins: \circ Gumara: 1.394 km²
 - \circ Gilgel: 1,664 km²
 - \circ Kessie: 65,784 km²

Figure 1: Location of Upper Blue Nile basin and its three sub-basins

- Gumara Boundary Gilgel Boundary Kessie Boundary
- **Basin Outlet**

R = 0.93

NSCE = 0.81

averaged daily ET at Upper Blue Nile

Reference Data and Model Forcings

Variable		Reference Data	Temporal Extent	Temporal Resolution
Precipitation	n	Gauge observed	1984 - 2012	Monthly
ET		GLEAM model	1980 - 2016 (0.25° resolution)	Daily
	Gumara		1980 - 2002	
Streamflow	Gilgel	Gauge observed	1980 - 2002	Daily
	Kessie		1980 - 2012	
Terrestrial Water Storage (TWS) Anomaly		GRACE	2002 - 2012	Monthly
	HTESSEL-CaMa		NOAH-MP	
	JULES		CLMS	
	LISFLOOD			
	ORCHIDEE		MERRA-2 and CHIRPS Pred Forcing (0.25° Resolution)	cipitation
	WaterGAP		Reanalysis Era Interim and Forcing (0.25° Resolution)	I MSWEP

Rehenuma Lazin, Xinyi Shen, Marika Koukoula, Zoi Dokou, Efthymios Nikolopoulos, and Emmanouil Anagnostou University of Connecticut, Civil and Environmental Engineering, Storrs, CT, United States; email: rehenuma.lazin@uconn.edu

CREST-SVAS

• CREST-SVAS

- A fully distributed hydrological model that Strictly couples energy and water balances and imposes closed energy balance.
- For water cycle simulation over large watersheds at a **fine spatiotemporal resolution** (e.g., 30 m to 1 km and hourly time).
- Simulation properties over Blue Nile
- Resolution: **500 m and 3 hourly**
- Duration: 1979 2014
- Forcing Data:
 - ✓ Meteorological Forcing: **Reanalysis ERA** Interim
- ✓ Precipitation: **MSWEP version 1** • Static Data:
 - ✓ Soil Texture Map: Soil Grids (3 layers, 0-2 m depth)

Figure 5: Relative Error (A - C) and Normalized Taylor Diagram (D - F) of monthly basin averaged precipitation, ET, and streamflow

farm level.

Results: Water Budget Analysis Terrestrial water storage is an important component of the water cycle. The terrestrial water balance for a prescribed area and period can be written as, TWS = P - ET - QGilgel Kessie CREST HTESSEL-Cal JULES LISFLOOD ORCHIDE WaterGar NOAH-MF - - - ·Obs - - ·MSWEP - - - ·MERRA HTESSEL-C LISFLOOD ORCHIDEE NOAH-MF CLMS Obs - CREST HTESSEL-CaMa JULES LISFLOOD ORCHIDEE WaterGap NOAH-MF CLMS ୶ୄୖ୶ୄଽ୶ୄୖ୶ୄ୶ୢୄଢ଼ୄ୵୶ୄୢ୶ୄ୵୶ୄୢୖ୶ୢୖ୶୷୶ୄୢ୶ୢୖ୶୶ୢ୶ୄ ୶ୄ୵୶ୄୖ୵୶ୄ୵୶ୄ୵୶ୢ୵ଡ଼ୢ୵ଡ଼ୢ୵ଡ଼ୢ୵ଡ଼ୢ୵୶ୢ୵୶ୢ୵୶ୢ୵୶ୢ୵୶ୢ Time (Months) Figure 6: For Gumara, Gilgel, and Kessie sub-basins - CREST - GRACE HTESSEL-CaMa JULES LISFLOOD ORCHIDEE WaterGap NOAH-MF CLMS TWS anomalies for Kessie with respect to GRACE 2002/01 2003/07 2003/07 2003/07 2005/01 2005/01 2005/01 2005/07 2005/07 2005/07 2005/07 2007/01 2009/07 2009/07 2011/07 2011/07 2011/07 2012/01 2012/0

Conclusion

► CREST and JULES perform consistently well at all three basin scales in terms of ET whereas for streamflow CREST has overestimation at Kessie. There is not any lake module in the model and Kessie is at the downstream of Lake Tana which may cause the overestimation.

Water budget analysis indicates that the water cycle components (ET, streamflow) from CREST balance reasonably well with the observed storage change. These hyper resolution water budget components can be used as inputs in local ground water models for agricultural applications at the