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Simulating and Predicting Cereal Crop Yields in Ethiopia: 
Model Calibration and Verification
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AGU Fall Meeting, New Orleans, December 2017

Agriculture in developing countries are extremely vulnerable to climate variability and 
changes. In East Africa, most people live in the rural areas with outdated agriculture 
techniques and infrastructure. Smallholder agriculture continues to play a key role in this 
area, and the rate of irrigation is among the lowest of the world. As a result, seasonal and 
inter-annual weather patterns play an important role in the spatiotemporal variability of crop 
yields. This study investigates how various climate variables (e.g., temperature, precipitation, 
sunshine) and agricultural practice (e.g., fertilization, irrigation, planting date) influence 
cereal crop yields using a process-based model (DSSAT) and statistical analysis, and focuses 
on the Blue Nile Basin of Ethiopia.  The DSSAT model is driven with meteorological forcing 
from the ECMWF’s latest reanalysis product that cover the past 10 years; the statistical model 
will be developed by linking the same meteorological reanalysis data with harvest data at the 
woreda level from the Ethiopian national dataset. Results from this study will set the stage for 
the development of a seasonal prediction system for weather and crop yields in Ethiopia, 
which will serve multiple sectors in coping with the agricultural impact of climate variability. 
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We developed and applied a crop model in simulating maize yield in Blue Nile Basin,
Ethiopia,. Based on the simulated results, we found out the correlation between yield
variability and climate factors, and developed a multivariable regression model as supplement
and comparison. Those could act as the foundation in revealing seasonal crop growth pattern
and predicting yield under future climate situation.

Background

Fig. 5. Comparison of model simulated yield in two fertilizer application condition with
observed value (left to right, top to bottom: NL, ML, SL, NH, MH, SH; the same below)

Fig. 1. (1) Location of study area, (2) landuse map, (3) Topographic map, (4) study
area division and sites selection

Ø Agriculture in Ethiopia is the foundation of the country's economy, accounting for half 
of gross domestic product (GDP), 83.9% of exports, and 80% of total employment.

Ø Agriculture in Ethiopia is almost entirely rainfed with only 1.4 percent of total cropped 
area irrigated, less than half of the African average. Droughts is the major risk and source 
of hardship for rural Ethiopian households.

Ø The World Bank’s Risk and Vulnerability Assessment (2005) found that potential rainfall 
shocks are the cause of vulnerability for 38 percent of the “vulnerable” population (those 
with a 50 percent likelihood of falling below the poverty line). 
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Ø DSSAT model is applicable in simulating the maize yield in this area.
Ø Increasing fertilizer application could improve maize yield.
Ø Yield is positively correlated with solar radiation but negatively correlated with

precipitation.
Ø From 2004 to 2013, the growing season precipitation exceeds the requirement of maize.
Ø Multivariable regression model could act as a supplemental measure for DSSAT in some

sites.

ØThe model simulated yields is similar to observed values in average. The increasing of
fertilizer application improved the yield in most situation (Fig. 5). However, because the
management patterns change from year to year while it’s constant in model, it’s very
difficult for model to capture the real variability.

ØIn order to know how climate factors affect maize yields, we plotted the interannual
variability of simulated yields and climate factors (Fig. 6 - 8). Solar radiation and
precipitation are the key factors that influence maize yield.

ØIn most of the situation, maize yield has a positive correlation with solar radiation and
negative correlation with precipitation (Fig. 9, 10)
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Model Construction

Fig. 4.  Model structure and data source

Ø DSSAT is a process-based crop model that integrates crop physiology and phenotype, 
weather and soil data, and crop management strategies. It has different modules to perform 
simulation for different crop types.

Ø In this research, we collected management data from partner farmers and local research
staff. We used 5 min ISRIC-WISE dataset to build the soil database. 0.25 degree MSWEP
dataset was used as weather input. For cultivar parameters, we selected a cultivar from
DSSAT database that planted most closely to our study area. Finally we used the national
crop yield dataset to calibrate model.

DSSAT
National Crop Yield Dataset

Model Calibration

Management Soil Weather Cultivar

ISRIC-WISE dataset
(5 min)

MSWEP dataset
(0.25 degree)

DSSAT cultivar
database

Partner farmers and
local research staff
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Fig. 7. Variability of simulated yields and temperature

Fig. 6. Variability of simulated yields and solar radiation

Fig. 8. Variability of simulated yields and precipitation
Our research area is Blue Nile River Basin in Ethiopia. The agriculture area accounts for 20%
of the total area. Considering the elevation influence on crop growth, the study area can be
divided into lowland and highland based on the topographic map. We select 3 sites from each
subdivision as our study sites (Fig. 1).

Fig. 2. Crop ranks by harvest area

Ethiopia is the fifth largest 
producer of maize in Africa. In
our study area, maize ranks the
second in harvest area in both
highland and lowland (Fig. 2).

We divided the crop land into the following 8 situations (Fig. 3):
1) Irrigated and Non-Fertilized Land (INF)
2) Irrigated and Fertilized with Natural Fertilizer Land (IFN)
3) Irrigated and Fertilized with Chemical Fertilizer Land (IFC)
4) Irrigated and Fertilized with Both Natural and Chemical Fertilizer Land (IFB)
5) Rain-fed and Non-Fertilized Land (RNF)
6) Rain-fed and Fertilized with Natural Fertilizer Land (RFN)
7) Rain-fed and Fertilized with Chemical Fertilizer Land (RFC)
8) Rain-fed and Fertilized with Both Natural and Chemical Fertilizer Land (RFB)

Fig. 3. Maize yield in woreda scale in 2013

Fig. 9. Correlation between yields and solar radiation

Fig. 10. Correlation between yields and precipitation

Fig. 11. Correlation between DSSAT simulated yield and
multivariable regression model results (high fertilizer)

We build a multivariable
regression model as supplement
and comparison to DSSAT.

Compared with the multivariable
regression model trained by
simulated results, the regression
model trained by observed values
doesn’t have a good performance
(Fig. 13). It is poorly correlated
with the observed values in every
sites.

Similar to high fertilizer
application condition, in low
fertilizer application
condition(Fig. 11), the
multivariable regression model
well correlated with DSSAT in
ML, SL and SH, but not
performed well in the other sites.

Fig. 12. Correlation between DSSAT simulated yield and
multivariable regression model results (low fertilizer)

Fig. 13. Correlation between observed yield and
multivariable regression model results

𝑌𝑖𝑒𝑙𝑑 = 𝐴×𝑆𝑅 + 𝐵×𝑃 + 𝐶

In high fertilizer application
condition (Fig. 11), the
multivariable regression model
has a good correlation with
DSSAT in ML, SL and SH, but
not performed well in the other
sites.


