## Hydropower and Water Management Practices and Challenges

**NSF - PIRE Kickoff Conference** 

Bahir Dar 11 July 2016

Paul Block University of Wisconsin - Madison



## **Ethiopia Weather & Climate Disasters**

### Ethiopia - Disaster Statistics

Data related to human and economic losses from disasters that have occurred between 1980 and 2010.

### Natural Disasters from 1980 - 2010

### Overview

| No of events:                            | 86         |
|------------------------------------------|------------|
| No of people killed:                     | 313,486    |
| Average killed per year:                 | 10,112     |
| No of people affected:                   | 57,382,354 |
| Average affected per year:               | 1,851,044  |
| Economic Damage (US\$ X 1,000):          | 31,700     |
| Economic Damage per year (US\$ X 1,000): | 1,023      |

### **Natural Disaster Occurence Reported**



#### Credit: Prevention Web

#### **Top 10 Natural Disasters Reported**

#### Affected People

| Disaster | Date | Affected   | (no. of people) |
|----------|------|------------|-----------------|
| Drought  | 2003 | 12,600,000 |                 |
| Drought  | 1983 | 7,750,000  |                 |
| Drought  | 1987 | 7,000,000  |                 |
| Drought  | 1989 | 6,500,000  |                 |
| Drought  | 2008 | 6,400,000  |                 |
| Drought  | 2009 | 6,200,000  |                 |
| Drought  | 1999 | 4,900,000  |                 |
| Drought  | 2005 | 2,600,000  |                 |
| Drought  | 1997 | 986,200    |                 |
| Flood    | 2006 | 361,600    |                 |

#### Economic Damages

| Disaster | Date | Cost (US | \$ X 1,000) |
|----------|------|----------|-------------|
| Drought  | 1998 | 15,600   |             |
| Flood    | 2005 | 5,000    |             |
| Flood    | 1994 | 3,500    |             |
| Flood    | 2006 | 3,200 💳  |             |
| Flood    | 1999 | 2,700 💳  |             |
| Flood    | 2005 | 1,200 💻  |             |
| Flood    | 1995 | 500 🖡    |             |
| Epidemic | 1980 | 0        |             |
| Epidemic | 1981 | 0        |             |
| Flood    | 1981 | 0        |             |

## Weather vs Climate

Time scales of interest:

"Weather"

"Climate Variability"

"Climate Change" •1-10 days

•2-3 months

•6 months – 1 year

Decades

Centuries

Atmosphere-Land conditions

Ocean-atmosphere-land conditions; conditions vary at slower rates – leads to predictability

Several decades

Climate change: in addition to physical processes, assumptions about human behavior

Credit: S. Someshwar

## Prediction: Where Are We?



From a WRM perspective, this provides prospects for predicting and managing water system risks (design, operation, allocation...)

## **Climate Prediction for WRM**

Goal

- Prepare not React
- Reduce risks
- Exploit opportunities

Why is implementation lacking?

Need Better Minister Martine Better Martine Better Minister Martine Better Bett

### Seasonal Climate Variability



### **Climate Factors: ENSO**

### Correlation of Nino3.4 and Kiremt Precipitation (CHIRPS); 1981-

2015



### **Climate Forecast Products**

Advanced information that can systematically be used in decision-



### **Climate Forecast Products**

### NMA – 2015 Kiremt Prediction; categorical. Shift toward drought



### **Cluster Analysis**

### Homogeneous Precipitation Regions (*Zhang, Moges, Block*)



### **Upper Blue Nile Basin - Hydropower**



11

- Four large-scale dams proposed (one started)
- Could a seasonal forecast improve benefits?
- Does the prediction technique have any influence?
- Does increased prediction skill translate to greater benefits?

## Linked Model System



### Hydropower Benefits

Median = marginal improvement; reduction in probability of low decades



## Forecast Value, Reliability, Threshold

Trade-off between reliability and benefits



### Water Management









# The Challenge

How can we better inform seasonal decision-making for agriculture and water resources / hydropower management?

- Technology development
- Social Human understanding
- Institutional cooperation
- Year-to-year variability in supply; changing demands
- Extremes

### National or Local Issue?

Focus on Today (security) or the Future (sustainability and resilience)?



## World's Water

