A Reminder: Irrigation Now than Ever in Ethiopia

Project Kickoff Workshop: Taming Water in Ethiopia

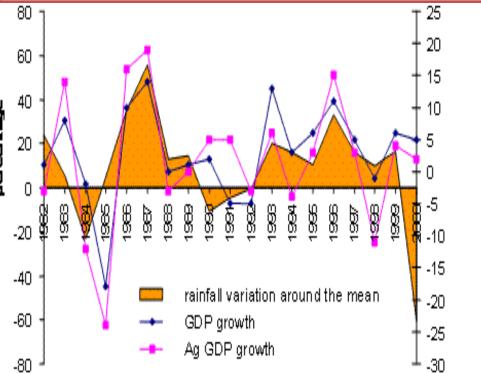
Semu Moges, PhD (Associate Professor of Water Resources Engineering) July 11-14, 2016, Bahirdar, Ethiopia

Irrigation Now than Ever in Ethiopia

- Historical Perspectives
- The Functional Relationship of Rainfall variability still persists
- Increasing Major Drought Phenomena
- Every 20 years Doubling Population
- Increasing Land Degradation
- What Action?
- PIRE Research

2. History of Drought (NAPA, 2007)

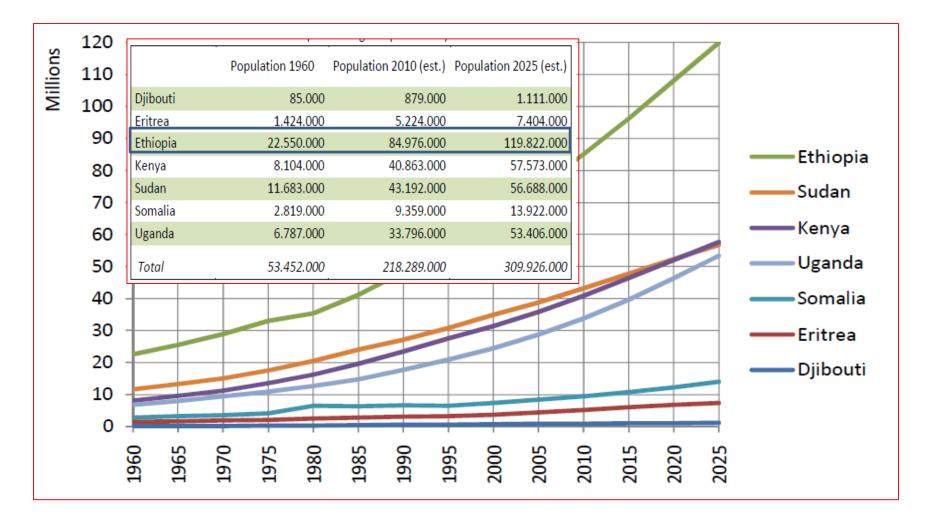
Period	Episode	Total Years			
16 th Century	1				
17 th Century	1				
18 th Century	0				
19 th Century	6				
20 th century	13	30			
1900 - 1949	3	8			
1950 - 2000	10	20			
1950-1960	2	3			
1961-1970	1	3			
_ 1971-1980	2	4			
1981-1990	3	5			
1991-2000	2	5			

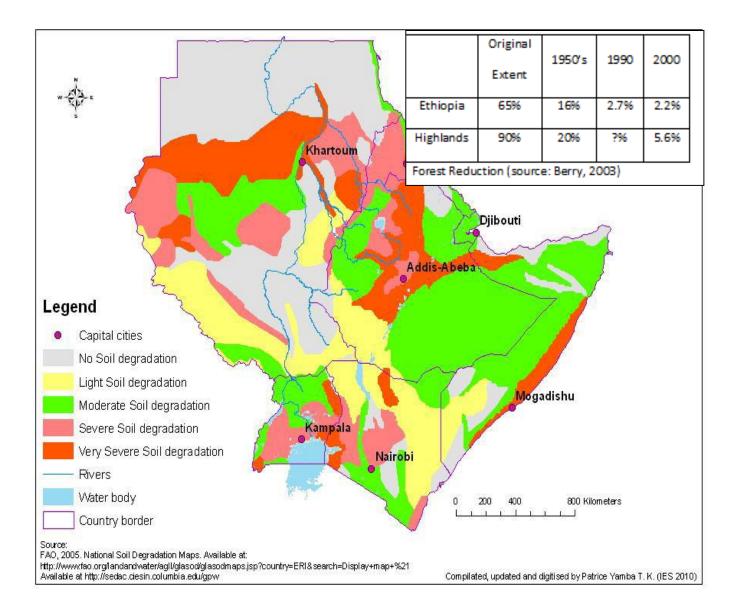

El Niño Yea:	rs Drought/Famine	Regions affected	Impact on human life and property
1539-41	1543-1562	Hararghe	
1618-19	1618	Northern Ethiopia	
1828	1828-29	Shewa	
1864	1864-66	Tigray and Gondar	
1874	1876-78	Tigray and Afar	
1880	1880	Tigray and Gondar	
1887-89	1888-1892	Ethiopia	
1899-1900	1899-1900	Ethiopia	
1911-1912	1913-1914	Northern Ethiopia	
1918-19	1920-1922	Ethiopia	
1930-32	1932-1934	Ethiopia	
1953	1953	Tigray and Wollo	
1957-1958	1957-1958	Tigray and Wollo	
1965	1964-1966	Tigray and Wollo	About 1.5 million people affected
1972-1973	1973-1974	Tigray and Wollo	About 200,000 people and 30% of livestock dead
	1978-79	Southern Ethiopia	1.4 million
	1982	Northern Ethiopia	2 million People affected
1982-1983	1983-1984	Ethiopia	8 million affected
		Ethiopia	One million dead and Many livestock lost
1986-87	1987-1988	Ethiopia	7 million people affected
1991-92	1990-1992	North, Eastern,	About 0.5 million people affected
1771-92	1770-1772	Southeastern Ethiopia	
1993	1993-94	Tigray and Wollo	7.6 People affected
2000		Ethiopia	About 10.5 million people affected
2002/2003	2002/2003		About 13 million people were in need of food assistance

Rainfall Variability (World Bank, 2006)

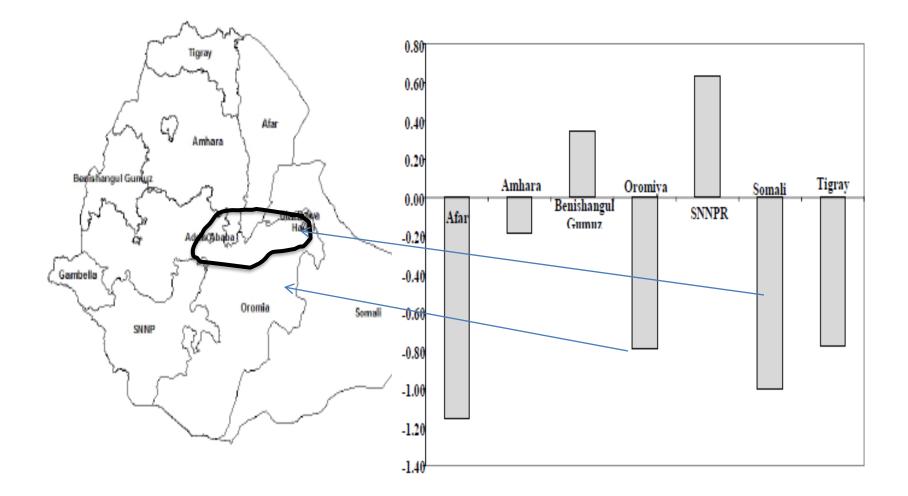
• Livelihood Impact

Macro Economic (World bank, 2006)


ffected Peopl	е				80]				
Disaster	Date	Affected	(no. of people)		60 -		Ţ	1	
Drought	2003	12,600,000		L L	40	Ā		1	
Drought	1983	7,750,000				*	1		
Drought	1987	7,000,000		8	20 👔		/		L
Drought	1989	6,500,000		Į	o 📙		4.		12
Drought	2008	6,400,000		-	- 8		<u>8</u> 8	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drought	2009	6,200,000			-20 🖗	ΰ Δ /i	8 8 8	1967	0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drought	1999	4,900,000			-40 -	1	1		
Drought	2005	2,600,000			-40		1		l I
Drought	1997	986,200			-60 🕇				(
Flood	2006	361,600						-)
					-80 🚽				


Nine drought Disasters (1983-2009) On average: 1:3 year drought disaster

Population Increase


From 1960 to 2010 – population growth is 4 times

Land degradation Reducing Productivity

Increased Vulnerability

Stagnant Productivity per Hactare

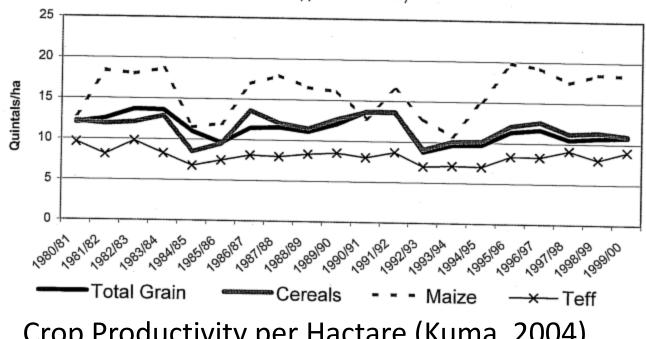
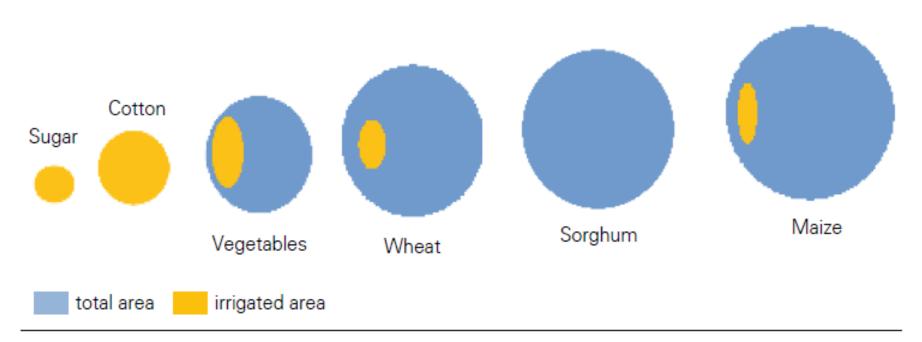


Figure 1. Trends in Agricultural Yields, 1980-2000 (quintals/hectare)


Crop Productivity per Hactare (Kuma, 2004)

While Agricultural Productivity remains more or less the same, the population increased almost 3 to 4 times 1960 to 2010

Slow Irrigation Development in Ethiopia

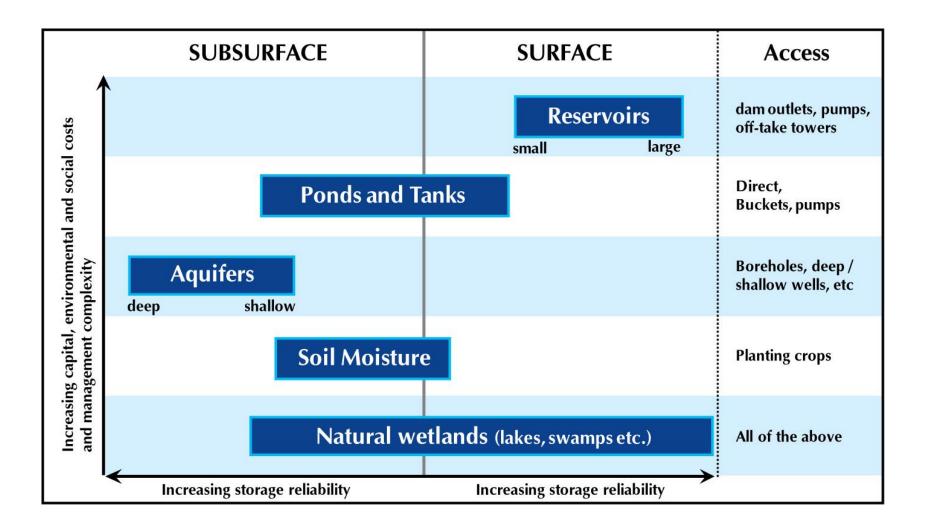
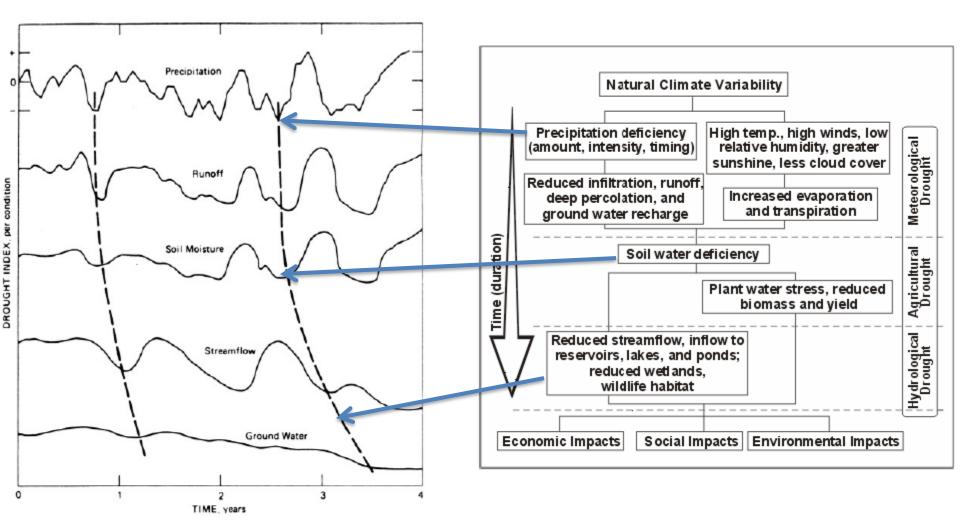

Irrigation development increased from less than 5% 10 years ago to 10%

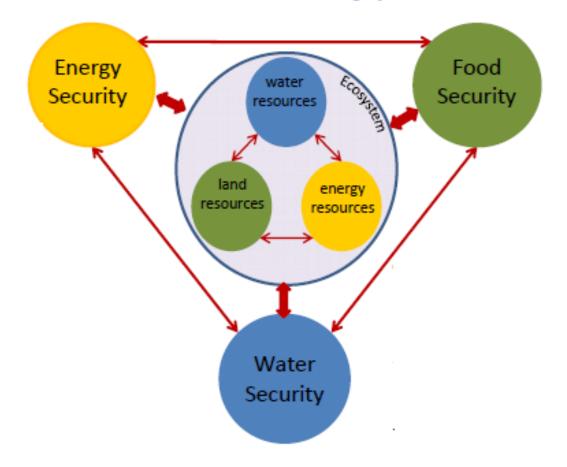
Figure 5: Estimates of the relative size of irrigated area by crop in Ethiopia, 2013



Source: FAO Aquastat.

Action: Storage Continuum

Action: Forecasting what?



Proceeding of precipitation deficit throughout the hydrological cycle (Rasmusson, 1993) Influence of precipitation deficiency and other factors on drought development (National Drought Mitigation Center)

Action: Knowledge and Technology

- Integrating
 - knowledge, technology and finance from external/internal source and;
 - labor, land and indigenous knowledge from the community
 - For Wide Area Irrigated Agricultural and Productivity enhancement

Action: Integrating Other Sectors Water-Food-Energy Nexus

Challenges

- Limited qualified human resources
- Weak institutional capacity
- Irrigation company presence concentrated in Addis or travelling into the country on an ad hoc basis
- Inadequate land governance and tenure conditions
- High power tariff limits
- Limited agro-industries and value chain linkage
- Lack of investment in extension,
- History of delays in design, contracting, and construction of irrigation infrastructure

PIRE Research Input

- Improving predictive ability of
 - Precipitation (for irrigation and rainfed agriculture),
 - Runoff (for irrigation, Energy)
 - -Soil moisture (Rainfed Agriculture),
- Improving communication skills and adaptability by different actors:
 - farmers, water and agriculture managers, policy makers

Discussion Questions

- What are traditional prediction knowledge for rainfed Agriculture?
 - Are they working? Failed to work
- Can we develop scientific prediction system for rainfed agriculture?
- Can we develop communication systems commensurate to farmers?
- In what way is Irrigation improving the life's of farmers?
- Are Irrigation Schemes like Koga utilizing prediction systems for crop water requirement estimation and inflow forecasting to the reservoirs?

Thanks for listening!